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In the context of determining the extent of dynamical heterogeneity of relaxation processes, it has proven
useful to represent the ensemble-averaged autocorrelation fungtioh in the general form ¢(t)
=[g(7r)x(t/7)dr, instead of focusing on the usual special case in which the basis fungtigns) are
exponentials. In practices(t) is often fit by a stretched exponentig(t) = exd — (t/7)?]. Here we analyze the
properties of the probability density(7) for the case in which)(t) is a superposition of stretched exponen-
tials, and is itself a stretched exponential, with a stretching exponent greater than or equal to those of the basis
functions,y(t/7). Various degrees of nonexponentiality intrinsic in each basis function translate into different
values for the time-dependent variane&t) of the stochastic quantity(t/7), in which 7 is considered to be
a spatially varying characteristic time scale. We state a simple but exact solutierf(fdr and assess its
relation to experimental data on the inhomogeneous optical linewigjtft), measured in the course of
solvation processes in a supercooled liquid.
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[. INTRODUCTION simulations[9,10] aimed at discriminating between hetero-
geneous and homogeneous models of the dynamics indicate
The primary relaxation in most glass-forming materialsclearly that the relaxation time scale is a spatially varying
deviates strongly from a single exponential response patterguantity. However, the observation of heterogeneity or dy-
especially near the glass-transition temperaliy€l,2]. The ~ namical selectivity is not necessarily associated with purely
experimental approach to the relaxation behavior is usuallgXponential response functions for the individual relaxors
given in terms of the decay of(@ormalized autocorrelation  [11,12. On a gradual scale ranging from the heterogeneous
function é(t)=(u(t)u(0))/(u(0)x(0)), in which w(t) t© the homogeneous limit, one has to allow for the case of a
(e.g., a dipole moments measured following a perturbation C€rtain degree of intrinsic nonexponentialiyr homogene-
att=0. Typically, an experiment probes the ensemble averly) combined with site-specific time scales.

age, in the sense that only the net effect of a large number of The Tollowing two heuristic expressions are commonlly
I ) . L . used to modelp(t). In many cases, the stretched exponential
contributions from different sites within a sample is mea-

. - o Kohl h-Willi -Watt§l3] (KWW f i
sured. Regarding this statistical average over all relafters or rohirausc Hliams-Watt§13] ( ) decay function

laxing entities in the sample volume, one usually observes a
nonexponential decay of the autocorrelation functib(t).

Because the individual contributions are not necessarily N the ch teristic feat f i
identical, we expresg(t) as a superposition of site-specific 2P orc> 1€ Charactensic 1eatures o swwbrmalized re-

responsesg(t) = ¢, xi (1), without presuming they;(t) to laxation processeldl-3,14. A common alternative analysis

be themselves exponential. Such an ensemble-averaged dfﬁf]decay patterns is in terms of a probability deng(y) for

: . ) . . 1ding a site related to the single time constansuch that
persive relaxation pattern can be rationalized in two ways§pa ensemble-averaged decay reads
[3]. In the dynamically heterogeneous picture, the individual
contributions are assumed to be purely exponenjdlt) "
«cexd —t/7], but subject to aspatia) distribution of time ¢(t):J g(ne Ydr. 2)
scalesr; . In the other extreme, the homogeneous picture, the 0
contributions tog(t) are not site specific, i.e¢(t) < x;(t).

For an experimental assessment of the nature of relaxatioBquation(2) is usually associated with the idea of dynamic
dynamics, one is confronted with the fact that a typical ex-heterogeneity, i.e., that the characteristic time seale a
periment has access only to the ensemble-averaged resporstechastic quantity, and that each site contributes exponen-
of the material, whereas the individual contributions are notially to the overall decay15-18. Finding an appropriate
necessarily identical. In fact, recent experimes8] and  g(r) for a given set ofp(t) data is not decisive regarding the

nature of the underlying processes, because any decay can be
cast into the form of Eq(2), even if the assumption of an
*FAX: +49/6131/379100. Electronic address: exponential integral kernel, ekpt/7], is conceptually inap-
RICHERT@MPIP-MAINZ.MPG.DE propriate.

d(t)=expd — (t/ iuw) W], 0<Biwws=1 (1)
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A more general approach to a response pattern can be %
obtained by relaxing the condition of an exponential integral an((r—(ﬁ)“):f (7—(m)"g(7)dr. (5
kernel in Eq.(2), i.e., expressingp(t) as[3] 0
" We will refer only to normalized decays(0)=1, such that
q&(t):f g(7) x(t,mdr. (3) ap=Jg(7)dr=1 is demanded. We have calculated all mo-
0 mentsea, of g(7), with the result

Equation(3) is meant to describe the situation of uncoupled Bintel' (! Broww)

relaxors associated with a common nonexponentiality of de- an=(1")=TRww W

cay patternsy(t,7), but subject to a distribution of charac- rww e

teristic relaxation times [11,12. The functiong(7) repre- o L(1+n/Brww)

sents the probability density for finding a site with a time = Tkww T(1+n/Bpy) ®)

constantr, and possible temporal fluctuations of thHe are

ignored. Two special cases of EQ), g(7)=46(7—79) and  whereI'(z) denotes Euler's gamma function. The function
x(t)=exd —t/7], correspond to the purely homogeneous andy(7) can thus be represented by the inverse Fourier trans-
heterogeneous pictures, respectively. Note, however, thddrm of the above results:

various degrees of heterogeneity can be introduced by gradu-

ally changing the extent of non-exponentiality pft) and mg(7)=g*(In 7)

adjustingg(7) accordingly, so that a large number of equally 1 (4 F(1-iclg )
adequate fits are obtained for a given data sep@), but - f () oW e, (7)
each associated with very different natures regarding the un- 2m J - I'(1=io/Biny)

derlying molecular mechanisms of the relaxation process. ) , i
Because of their practical importance to experimentaBY @ Simple transformation, solving E(f) can be reduced

results, we focus on KWW-type decay functiong(t) to solving the specia_l cas@mrf 1, for which a series expan-
= ex] — (U ieww) PW] and y (t) = exg — (t/7)Pnv], with only SN has been obtained ea_1rl|[619]. As result for all cases
one parameteg which governs the deviation from exponen- 9<Bkww<Biny=<1, we obtain
tial behavior. The degree of nonexponentialityrinsic in o n T
each relaxor is measured I8y, . Therefore, we confine the - _n (D" (7 Tkww)

S . 79(7)=g*(In 7) Bmtrz .
problem to the more specialized but practically relevant ai=1 b T(=nBxww/!Bintr)
equation (8

o For practical purposes, it is often desirable to have the
¢(t)=eXF[—(t/Twa)ﬁKWW]=fo g(nexd —(t/1)Prldr. jogarithmic momentsa® =(£") and central momentg.*
@) =((&—(&))™) for £&=In(7), and with respect to the probabil-
ity density g* (&), which is related tog(7) via g* (£)dé¢
The scope of this work is to outline the necessary proper=g(7)dr or g* (¢)=rg(7). The results for the meaa7 ,
ties of the probability densitg(7) in order to satisfy Eq(4)  the variancesw3, and u3 (related to the skewness defined
as a function ofBxww and Biy . In a second step, we dem- either by u% u% %2 or by u%2u3 ~°) are
onstrate that different degrees of dynamical heterogeneity

translate into 88;,,-dependent variance?(t) regarding the ai =& =In(reww) + zp(l)[ﬁ,g\,},w—ﬁi;t}],
intrinsic responses ekp (t/7)#nr]. We state an exact expres-

sion for p(t) = o?(t) for an arbitrary ensemble-averaged de- wh=((E—(END =" (D[ Briw— Binil,

cay ¢(t), and address its properties in Sec. Il. A brief sum-

mary of previous experimental results on the time-dependent Wi =((E— (N =" (V[ Brow— Bincl. (9)

optical linewidtha,,(t) derived from a solvation dynamics

study is given in Sec. lll. Section IV then establishes the linkin Eq. (9), (" (z)=d" InT(2)/dZ" denotes the polygamma
between the analytical result fai(t) and the experimental functions with ¢(1)=—y (Euler's constant,y~0.577...),
quantity or,,(t) and the implications regarding the nature of #'(1)= /6, and ¢ (1)=—2¢(3), {(z) being Riemann's

relaxation processes. zeta function. Note that in generad:a&zp(“‘l)(l)[ﬂg\}\‘,w
— Bint] for n>3. Some details on calculating the linear and
Il. RESULTS logarithmic moments of(7) andg* (In 7) without invoking
integral transforms are outlined in the Appendix.
In what follows,g(7) is understood as being the probabil-  The functiony(t), the integral kernel in Eq4), has been

ity density which satisfies Eq@4) for an arbitrary r«ww  introduced as the individual relaxation contribution of a site
>0, and for any exponents3 within the limits O  wijth characteristic time scale Since the value of varies

< Brww<Binr=1, whereasBww=Binr leads tog(7)=46(7  from site to site wheneves,,>Bq«ww, it can be considered
— Tkww) . We denote thenth moment ofg(7) by a,, and 3 random variable. Obviously, variations #rlead to varia-

the nth central moment 0§(7) by un: tions regarding the site-specific decay functiongt)
. =ex{d — (t/7)Pnr], such thaty(t) is a function which varies
an:<7'n>:j Mg(r)dr, stafcistically from site to site. For reasons which will be ex-
0 plained below, we calculate the mean and variancg (of
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for a given ensemble-averaged deagft), i.e., for a given
probability densityg(7). The mean(x(t)), is directly given
by Eq. (3), {(x(t))=¢(t). The dispersion or variance of
x(1), p(t), can be obtained accordingly using E4),

p(t) ={ x(t)—(x(1))]%)= p(2MPimt) —[ $(1)]?,
(109

with p(t=0)=p(t—x=)=0.
For the case of current
Tieww) P<Ww], we have

p(1) = ([ x(t) = (x(1))]*y= p(2VFint) — p(2VFrwwt),
(10b)

interestp(t) =exd —(t/

with p(t)=0 if Bw=Bxww, and withp(t) attaining a maxi-
mum whenevepi ;= Bxww- The positiont ., at which (for
finite values oft) the slope ofp(t) vanishesdp(t)/dt=0, is

_ 1/
tmax= Tkww 0 'BKWWv

0=In(2)[1-\1[2-2"], N=Bxww/Biny- (1D
The amplitude at the peak positiop,a=p(tna), can be
written aspma=exfd —2"8]—exd —246], which is bounded to
Pmax=3. Finally, we define the standard deviation yft),
a(t)=p(t), and its peak valuera=o(tma), With omax
<3. It is worth noting that the values @fy,,x and oy de-
pend only on the key parameteBg,, and Bxww in the form
of the ratio\ = Bxww /Bintr-

[ll. SOLVATION DYNAMICS

DYNAMIC HETEROGENEITY, SPATIALLY . ..

781

sion stems from a distribution of site-specific free energies
and where théhomogeneoubinewidth of an individual emit-

ter, ohom, remains negligible. The contributions ot,,,, to

the observed optical linewidth remain small only at suffi-
ciently low temperatures, where the dephasing times are ac-
cordingly large. For this reason, fluorescent probes are inap-
propriate for measuringri,,(t). Note that the issue of
inhomogeneous versus homogeneous optical broadening
bears no direct relation to the problem of dynamic heteroge-
neity versus dynamic homogeneity.

For a system in thermodynamic equilibrium, the theory
states that inhomogeneously broadened optical lines are of
Gaussian shape, and that their varian%eand response am-
plitude Av are related by23,24]

2
90 _ (me /-LE)kT' 12
Av chug
i.e., this ratio no longer depends on the thermodynamic state
of the solvent under steady state conditions. Therefore, the
values of Av and oy cannot be tailored independently by
experimental conditions.

Similar to a dielectric relaxation experiment yielding the
time-dependent susceptibility(t), phosphorescence solva-
tion dynamics probe the relaxation process due to orienta-
tional molecular motion in terms o€(t). In the present
context, the important feature of the solvation results is their
additional informationgr;,,(t), regarding the possible spatial
variation of site-specific contributions t€(t). Although
such g, (t) data have recently been analyzed in terms of
dynamic heterogeneity8,12] by approximate simulation
procedures, no analytical expression has been advanced so

A brief summary of the experimental technique referredfar which rationalizes the time-dependent widik,(t) of
to, phosphorescence solvation dynamics, appears in ordégnhomogeneously broadened optical emission profiles. As we
The technique of phosphorescence solvation dynamics irwill show below, the functiorp(t) in Eqg. (10) is the key
volves the time-resolved emission spectra of probe molingredient for modeling the time dependenceogi(t).
ecules dissolved at low concentration in a polar material. At

time t=0, the chromophores are electronically excited from

their ground stat&, to their excited stat&, thereby induc-

ing a change\ uw= ug— ug in the permanent dipole moment

of the probe$20]. The effect of this transition is to initiate a
dielectric relaxation process within the solvdil], such
that the emission energy (t) of each probe moleculede-

IV. DISCUSSION

Casting the possible spatial variation of response patterns
in disordered materials into a probability densgyr) of
relaxation times is common practice. However, the
ensemble-averaged relaxation functig(t) is usually repre-

creases with time, whenever orientational polarization is acsented by a superposition of purely exponential contribu-
tive within the excited state lifetime. The mean emissiontions, which corresponds to our limiting case of heterogene-
energy v(t)=(»;(t)) reflects the average dynamics of the ity with Bj,,=1. Only recently, it has been recognized that
Stokes shift, which closely follows the macroscopic dielec-EQ. (4) is a practical approach for assessing the intermediate
tric modulusM(t) of the solvent, as has been demonstratecsituations between the homogeneous and heterogeneous ex-
quantitatively{22]. The total Stokes shift on the energy scaletremes[11,12. Since solving Eq(4) is more general than

is given byA v=v(0)— (=), and the normalized decay can seeking for theg(7) which results in a KWW typep(t) in

be represented bZ(t)=[v(t)—v()]/Av. At time t=0,

Eqg. (2), we do not expect to find an expression i)

the emission spectrum resembles a Gaussian profile chara®uch simpler than Ed8) for arbitrary values of the intrinsic

terized by its mean(0) and standard deviatiog,,(0). In

dispersion measured b¥;,,. The special casg;,,=1 and

the equilibrium state—, the spectrum is again of Gauss- N=1 in Eq. (6) leads to the well known expression for the

ian shape withoi,()=0y(0)= 0. Therefore, this optical

average KWW time scale{ ) www= Tkww! (1/Bxww)/

experiment not only observes the approach of the averagéxww [19]. Also, the formulas for the mean? , variance

energyv(t) toward equilibrium, but also the distribution of

w5, and skewnesg as regard€=In(7) represent gener-

site-specific solvation free energies in terms of the entiralizations of former result§25] for the special case;,,
emission profile or in terms of its second central moment=1. The above exact expressions for the momentg(a}

guantified byoi";h(t). It is important to realize that;,, refers

and g*(In 7) for arbitrary parameters within the limits 0

to theinhomogeneouknewidth, where the energetic disper- <Bxww<Binv=1 are especially of interest when approxi-
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FIG. 1. Individual relaxation patterng;(t) for an ensemble- Pintr

averaged decay(t) =(xi(t)) of the KWW type with ryw=1 FIG. 2. Graphs of positiofi,, (in units of 7xyw) and ampli-

and Byww=0.5 and for various values g8i,,=0.50, 0.55, and  yge,  regarding the peak of the time dependent varian(

1.00. The decayg;(t) in each panel are traces of §xg{t/r)Fnr] = (xi(1)>) = (xi(t))? as a function ofB;, . The curves are paramet-

with In(r)=a} —u3 (left dashed ling of (solid line), andai  ic'in Biww, ranging from 0.1 to 0.9 in steps of 0.1. The dots for

+\/u3 (right dashed ling i.e., at Ing)=(In(r)) * the standard g, =0.5 mark the three situations outlined in Fig. 1.

deviation of In¢;). The dottedo(t) curves represent the standard

dewaﬁ%?s of the Sge dSpZ;itf;C. dggayf;((gtf)%—fl)?h(t)) 2)1.;2' Ihe limit. More sensible in this context are the peak values, ei-

ensembpble average ec IS 1aentical 1or a ree situations, _ _ . i

and therefore refglyects only partial information on the relaxation pro-therpmax_p(tmaQ OF Tmap=0{tmayd, WIth the POSItions Ot gy

cess. given by Eq.(11). The dependences tfayandpmay ON Bing

and parametric irBxww are presented graphically in Fig. 2.

mate expressions fag(r) are required, which are easier to 1ne bounds for arbitrary exponentsBww=pSin,<1 are

handle than the form of Ed@). pSpmaXSZ and OSUmaxgz- A .furt_her useful time-
In the following, we will focus on the variance or disper- iNdependent scale of the dispersion is the area up@gr

sion of the intrinsic decay functiog(t) = exd —(t/7)%n] as normahzgdl to its_upper limit 7) kww/2, where (7)ww

a function of 8., . The averagé x(t)) is directly given by ~ TrwwBiww! (Brww)

Eq. (4), {x(t))=¢(t). For the variance(t) we havep(t)

= ([x(t) = (x(1)13)= $(2"#nrt) [ ¢(1)]? from Eq. (10a), A

without having to specify a particular function fgi(t). The P(Bintr Brww) = (T ww fo p(t)dt

interpretation ofp(t) is as follows. If it were possible to

detect the normalized responggét) of the individual relax- =2X[27 YBinw— 2~ Vhrww], 13

ors (i=1,...N) within the material under study, then the
variance of amplitudes at timeis given by p(t). Figure  with P(B,8)=0 andP(1,0)=1.
1 outlines different situations for the example(t) Up to this point, we have refrained from relating the re-
=exg — (U ricww) W] with Brww=0.5 andrw=1. For  sults to experimental observables, except for identifying
Binty= Bxww » there is no dispersion ig(t), whereaso(t)  ¢(t) with typical relaxation data. Numerous experimental
=\p(t) (dotted line} displays an increasingly pronounced techniques are available for measuring this ensemble-
peak a8, increases toward the purely heterogeneous limitaveraged respons&(t). However, an infinite number of val-
at Biny=1. The different decayg;(t) in Fig. 1 are traces of ues forg;,, can rationalize a dispersiwg(t) data set, such
exgd —(Uz)Pnr]  with In(m)=af—Jui, of, and af  that¢(t) alone is bound to remain indecisive regarding the
+\/;§, in order from left to right curves, i.e., at Il  degree of heterogeneity of dynamical processes. In what fol-
=(In(7)) plus or minus the standard deviation of #( lows, we argue that the standard deviatisft) = \/p(t), as-

If o(t) or p(t) were employed for establishing a scale for sociated with the distribution of site-specific decayst),
the degree of heterogeneity, one would encounter the faectan be measured directly in terms of the time dependent
that these quantities are time dependent whenggyy  inhomogeneous optical line widi,,(t), thereby fixing the
# Biny» 1.€., for all cases except the purely homogeneousalue of Biyy -
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For rationalizingoi,+(t), measured in the course of a sol-

vation process, we assume a Gaussian distributjom(«)]
of equilibrated free energies centeredvéte),

1 i(0)— (o0 2
n[Vi(oc)]:ao\/iw ex;{[y( )= ()]

20'(2)
and an independent distribution of time scatesuch that
the single sitey;(t) can be written as

} . (14

vi(t)=vi(%)+Av exp — (t/7y)Pinr] = () + Avx;(x).
(15

Since the quantities;() andy;(t) are independent random
variables, the expectation valuét) and variancer%h(t) of

v;(t) can be obtained by adding the individual corresponding

moments, which yields

v(t)=(vi(1))=v()+AvC(t)=v(x)+Avep(t),
(16)

where ¢(t)=C(t) is again the normalized ensemble-
averaged response, and

o (O =([n()— vV ) =cd+Av%p(1),  (17)

with p(t)=[C(2YFinrt) — C(2VAxwwt)] from Eq. (10b). For

DYNAMIC HETEROGENEITY, SPATIALLY . ..
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FIG. 3. Experimental solvation dynamics resuli®tsy for the

the time-dependent relative changes in the Gaussian widtlystem QX/MTHF aff=95.1 K in terms of the normalized Stokes

we finally arrive at

2

A
_1; [C(2YPinut) — C(2VArwwt)]
%0

Tinn(t) v

Og

1+

(18)

now demonstrating the impact @8, on the observable
ann(t), whereasC(t) expectedly remains independent of
Bintr- The bounds of the time-dependent widity,(t) are
oinn(t) =0 for the case ofBiy=Bxww and oip(t) <[ o3

+ Av?/41Y2 for other values of & Bxww<Bin=<1. Equa-

shift C(t) and the inhomogeneous linewidh,(t) scaled ap(t).

The solid line in the upper frame is a fit to tl@(t) data using
o(t)=exd — (/25 msf®]. The lines in the lower frame refer to
p(t) based onp(t)=exd —(t/25 msf-5] for various values o,
=1.00, 0.90, 0.80, 0.70, 0.60, and 0.55, in the order from top to
bottom curve. The casg,,=Bxww= 0.5 leads tgp(t)=0.

lyzed recently by invoking numerical approximations to the

functiong(7) and using simulations in order to estimate the

impact of Bi,, on the time-dependent emission spectra

[8,12]. The advantage of the present result is to have simple
but exact formulas foorj,(t) in Eq.(18) or for o2,,(t) in Eq.

tion (18) now provides a straightforward link between the (17), which are applicable to KWW-type overall dynamics.

normalized Stokes shift response functid(t) and the tran-
sient increase in the inhomogeneous linewidjl(t). It pre-
dicts that an excess linewidth appears in the course of
solvation process ifand only iff the underlying dynamical

The results imply that we can interpret the variance of inho-
mogeneously broadened emission spectra as the sum of
gpectral contributiornoy and a dynamic contributiop(t).
Conversely to Eq(17), we now infer experimental values for

processes exhibit a spatial variation of time scales. Conpe,u(t) from the ojy(t) data using the expressiqn,(t)
versely, one could conclude on homogeneous dynamics from [ o2,(t) — 03]/ Av?, for which there is no unknown param-
an observation of a time-independent linewidth, i.e., ifeter on the right hand side. The experimental results for

Tinn(t) = 0.
Finally, we address experimental data obtainedsfgy(t)
in order to assess their use for delineating the valug;qf

Pexpt) are shown as dots in the lower panel of Fig. 3. The
lines in this plot are calculated(t) curves using Eq(10b)
with ¢(t)=C(t) =exd — (/25 msf-°] for various values of

and thereby the degree of heterogeneity in a real system. Thg, .. A comparison between experiment and calculation in-

experimental details on solvation data for quinoxali@x)

dicates that the relaxation dynamics are consistent only with

as a chromophore dissolved in the glass-former 20.8<g;,<1. In other words, the highest possible nonexpo-

methyltetrahydrofuran(MTHF) have been reported else-

where[8,12,21. For this system just above the glass transi-

tion temperatureTg=91K, it has been found thaf\v
=246 cmL, ojyn(*) = oi(0)=0p=160 cm'l, and C(t)
=exd — (t/7ww)’], in favorable agreement with the di-
electric propertiess* (w)=1/M*(w) of MTHF [21]. The
upper panel of Fig. 3 shows the(t) decay recorded at
=95.1 K together with a KWW fit withrcyww =25 ms and
Brxww=0.5. ThisC(t) and i, (t) data set has been ana-

nentiality inherent in the response of each relaxor corre-
sponds to a decay of the type éxi(t/n)°%], i.e., the pre-
dominant (if not the entirg contribution to the ensemble-
averaged nonexponentiality associated wigxyw=0.5
stems from the time scalebeing a spatially varying quan-
tity. Therefore, a parallel relaxation scheme is made respon-
sible for the overall KWW:-like dispersion, in contrast to a
previous hierarchical model for rationalizing stretched-
exponential behavidr26].
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V. CONCLUSIONS

"t exd — (1 Prww]dt
We have assessed the method of analyzing dispersive re- f 0 A= (U micww) ]

laxation patternsp(t) in terms of a distribution of KWW . .
decaysx(t), instead of confining the integral kernel to the :f g(T)J t° exd — (t/7)Pne]dt dr. (Al)
exponential case. This defines implicitly a probability den- 0 0
sity g(7) or g*(In 7) whose most relevant moments can be o o
calculated. We find that the varianpét) of the stochastic Substitutingw = (t/ rxyw) "W andv = (t/7)#inr defining p
quantity x(t) bears interesting features, because it is sensi=P+1 (Rep>0), and using the definition of the gamma
tive to the relaxation dispersion inherent in each relaxor aunctionI'(z)=[5t*"'e”'dt (Rez>0) leads to
guantified byB;,,. More importantly,p(t) or o(t)= Jp(t)
is measurable by means of phosphorescence solvation dy- fm p — (P = D F(1+P—/,3wa)

\ ' ) _ ?g(7)d7=(7")= hpw , (A2)
namics, which allows one to deriv@,,, from experimental 0 L1+ pl Biny)
data, whereas an ensemble-averaged deédayis bound to ) )
remain indecisive in this respect. The paramedgy, estab-  Which states the moments,=(+") with respect tog(7).
lishes a continuous scale ranging from purely heterogeneous For obtaining the logarithmic moments; and uy.-, of
to homogeneous dynamics, with only a pronounced extent @3 (In 7), we recall the above definitiong=In(7) and
heterogeneity (08B,,<1) being compatible with the g*(§)dé=g(7)dr, and define.(p) andK(n):
mechanism of structural relaxation in real systems.

L= |~ e 0e=()
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APPENDIX d" In L(p)
K(n)= Im ———, (A4)
A brief outline of how the momenta,, of g(7) and a7 , p—0+ dp

wn5, andus of g*(In 7) are calculated is given below. The

probability densityg(7) is defined implicitly in Eq.(4), and ~ WhereK(n) now has the following propertiesty =K(1),
depends on the parametetguyw >0, Bxww>0, and By 42 =K(2), andu3 =K(3). Thefinal evaluations oK (n)
> Biww - Multiplying Eq. (4) by t® with Reb>—1, and in-  generate the results stated in E§). Note again thatu}
tegrating ovett within the limits Q . . . , «, yields =K(n) is not warranted fon>3.
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