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Dynamic heterogeneity, spatially distributed stretched-exponential patterns, and transient
dispersions in solvation dynamics

Ranko Richert*
Max-Planck-Institut fu¨r Polymerforschung, Ackermannweg 10, 55128 Mainz, Germany

Manfred Richert
Weberstrasse 67, 53113 Bonn, Germany

~Received 24 November 1997!

In the context of determining the extent of dynamical heterogeneity of relaxation processes, it has proven
useful to represent the ensemble-averaged autocorrelation functionf(t) in the general formf(t)
5*g(t)x(t/t)dt, instead of focusing on the usual special case in which the basis functionsx(t/t) are
exponentials. In practice,f(t) is often fit by a stretched exponential,f(t)5exp@2(t/t)b#. Here we analyze the
properties of the probability densityg(t) for the case in whichf(t) is a superposition of stretched exponen-
tials, and is itself a stretched exponential, with a stretching exponent greater than or equal to those of the basis
functions,x(t/t). Various degrees of nonexponentiality intrinsic in each basis function translate into different
values for the time-dependent variances2(t) of the stochastic quantityx(t/t), in which t is considered to be
a spatially varying characteristic time scale. We state a simple but exact solution fors2(t), and assess its
relation to experimental data on the inhomogeneous optical linewidths inh(t), measured in the course of
solvation processes in a supercooled liquid.
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I. INTRODUCTION

The primary relaxation in most glass-forming materia
deviates strongly from a single exponential response patt
especially near the glass-transition temperatureTg @1,2#. The
experimental approach to the relaxation behavior is usu
given in terms of the decay of a~normalized! autocorrelation
function f(t)5^m(t)m(0)&/^m(0)m(0)&, in which m(t)
~e.g., a dipole moment! is measured following a perturbatio
at t50. Typically, an experiment probes the ensemble av
age, in the sense that only the net effect of a large numbe
contributions from different sites within a sample is me
sured. Regarding this statistical average over all relaxors~re-
laxing entities! in the sample volume, one usually observe
nonexponential decay of the autocorrelation functionf(t).
Because the individual contributions are not necessa
identical, we expressf(t) as a superposition of site-specifi
responses,f(t)5(cix i(t), without presuming thex i(t) to
be themselves exponential. Such an ensemble-averaged
persive relaxation pattern can be rationalized in two w
@3#. In the dynamically heterogeneous picture, the individ
contributions are assumed to be purely exponential,x i(t)
}exp@2t/ti#, but subject to a~spatial! distribution of time
scalest i . In the other extreme, the homogeneous picture,
contributions tof(t) are not site specific, i.e.,f(t)}x i(t).

For an experimental assessment of the nature of relaxa
dynamics, one is confronted with the fact that a typical e
periment has access only to the ensemble-averaged resp
of the material, whereas the individual contributions are
necessarily identical. In fact, recent experiments@4–8# and
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simulations@9,10# aimed at discriminating between heter
geneous and homogeneous models of the dynamics ind
clearly that the relaxation time scale is a spatially varyi
quantity. However, the observation of heterogeneity or
namical selectivity is not necessarily associated with pur
exponential response functions for the individual relax
@11,12#. On a gradual scale ranging from the heterogene
to the homogeneous limit, one has to allow for the case o
certain degree of intrinsic nonexponentiality~or homogene-
ity! combined with site-specific time scales.

The following two heuristic expressions are common
used to modelf(t). In many cases, the stretched exponen
or Kohlrausch-Williams-Watts@13# ~KWW! decay function

f~ t !5exp@2~ t/tKWW!bKWW#, 0,bKWW<1 ~1!

captures the characteristic features of such~normalized! re-
laxation processes@1–3,14#. A common alternative analysi
of decay patterns is in terms of a probability densityg(t) for
finding a site related to the single time constantt, such that
the ensemble-averaged decay reads

f~ t !5E
0

`

g~t!e2t/tdt. ~2!

Equation~2! is usually associated with the idea of dynam
heterogeneity, i.e., that the characteristic time scalet is a
stochastic quantity, and that each site contributes expon
tially to the overall decay@15–18#. Finding an appropriate
g(t) for a given set off(t) data is not decisive regarding th
nature of the underlying processes, because any decay c
cast into the form of Eq.~2!, even if the assumption of an
exponential integral kernel, exp@2t/t#, is conceptually inap-
propriate.
779 © 1998 The American Physical Society
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A more general approach to a response pattern can
obtained by relaxing the condition of an exponential integ
kernel in Eq.~2!, i.e., expressingf(t) as @3#

f~ t !5E
0

`

g~t!x~ t,t!dt. ~3!

Equation~3! is meant to describe the situation of uncoupl
relaxors associated with a common nonexponentiality of
cay patternsx(t,t), but subject to a distribution of charac
teristic relaxation timest @11,12#. The functiong(t) repre-
sents the probability density for finding a site with a tim
constantt, and possible temporal fluctuations of thet’s are
ignored. Two special cases of Eq.~3!, g(t)5d(t2t0) and
x(t)5exp@2t/t#, correspond to the purely homogeneous a
heterogeneous pictures, respectively. Note, however,
various degrees of heterogeneity can be introduced by gr
ally changing the extent of non-exponentiality ofx(t) and
adjustingg(t) accordingly, so that a large number of equa
adequate fits are obtained for a given data set off(t), but
each associated with very different natures regarding the
derlying molecular mechanisms of the relaxation process

Because of their practical importance to experimen
results, we focus on KWW-type decay functions,f(t)
5exp@2(t/tKWW)bKWW# andx(t)5exp@2(t/t)bintr#, with only
one parameterb which governs the deviation from expone
tial behavior. The degree of nonexponentialityintrinsic in
each relaxor is measured byb intr . Therefore, we confine the
problem to the more specialized but practically relev
equation

f~ t !5exp@2~ t/tKWW!bKWW#5E
0

`

g~t!exp@2~ t/t!b intr#dt.

~4!

The scope of this work is to outline the necessary prop
ties of the probability densityg(t) in order to satisfy Eq.~4!
as a function ofbKWW andb intr . In a second step, we dem
onstrate that different degrees of dynamical heterogen
translate into ab intr-dependent variances2(t) regarding the
intrinsic responses exp@2(t/t)bintr#. We state an exact expres
sion for r(t)5s2(t) for an arbitrary ensemble-averaged d
cay f(t), and address its properties in Sec. II. A brief su
mary of previous experimental results on the time-depend
optical linewidths inh(t) derived from a solvation dynamic
study is given in Sec. III. Section IV then establishes the l
between the analytical result forr(t) and the experimenta
quantitys inh(t) and the implications regarding the nature
relaxation processes.

II. RESULTS

In what follows,g(t) is understood as being the probab
ity density which satisfies Eq.~4! for an arbitrarytKWW
.0, and for any exponentsb within the limits 0
,bKWW,bintr<1, whereasbKWW5bintr leads tog(t)5d(t
2tKWW). We denote thenth moment ofg(t) by an , and
the nth central moment ofg(t) by mn :

an5^tn&5E
0

`

tng~t!dt,
be
l

-
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mn5^~t2^t&!n&5E
0

`

~t2^t&!ng~t!dt. ~5!

We will refer only to normalized decaysf(0)51, such that
a05*g(t)dt51 is demanded. We have calculated all m
mentsan of g(t), with the result

an5^tn&5tKWW
n b intrG~n/bKWW!

bKWWG~n/b intr!

5tKWW
n G~11n/bKWW!

G~11n/b intr!
, ~6!

whereG(z) denotes Euler’s gamma function. The functio
g(t) can thus be represented by the inverse Fourier tra
form of the above results:

tg~t!5g* ~ ln t!

5
1

2p E
2`

1`

~t/tKWW! is
G~12 is/bKWW!

G~12 is/b intr!
ds. ~7!

By a simple transformation, solving Eq.~7! can be reduced
to solving the special caseb intr51, for which a series expan
sion has been obtained earlier@19#. As result for all cases
0,bKWW,bintr<1, we obtain

tg~t!5g* ~ ln t!5b intr(
n51

`
~21!n

n!

~t/tKWW!nbKWW

G~2nbKWW /b intr!
.

~8!

For practical purposes, it is often desirable to have
logarithmic momentsan* 5^jn& and central momentsmn*
5^(j2^j&)n& for j[ ln(t), and with respect to the probabi
ity density g* (j), which is related tog(t) via g* (j)dj
5g(t)dt or g* (j)5tg(t). The results for the meana1* ,
the variancesm2* , andm3* ~related to the skewness define
either bym3* m2*

23/2 or by m3*
2m2*

23) are

a1* 5^j&5 ln~tKWW!1c~1!@bKWW
21 2b intr

21#,

m2* 5^~j2^j&!2&5c8~1!@bKWW
22 2b intr

22#,

m3* 5^~j2^j&!3&5c9~1!@bKWW
23 2b intr

23#. ~9!

In Eq. ~9!, c (n)(z)5dn ln G(z)/dzn denotes the polygamm
functions with c(1)52g ~Euler’s constant,g'0.577...),
c8(1)5p2/6, andc9(1)522z(3), z(z) being Riemann’s
zeta function. Note that in generalmn* Þc (n21)(1)@bKWW

2n

2b intr
2n# for n.3. Some details on calculating the linear a

logarithmic moments ofg(t) andg* (ln t) without invoking
integral transforms are outlined in the Appendix.

The functionx(t), the integral kernel in Eq.~4!, has been
introduced as the individual relaxation contribution of a s
with characteristic time scalet. Since the value oft varies
from site to site wheneverbintr.bKWW, it can be considered
a random variable. Obviously, variations int lead to varia-
tions regarding the site-specific decay functionsx(t)
5exp@2(t/t)bintr#, such thatx(t) is a function which varies
statistically from site to site. For reasons which will be e
plained below, we calculate the mean and variance ofx(t)
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for a given ensemble-averaged decayf(t), i.e., for a given
probability densityg(t). The mean,̂x(t)&, is directly given
by Eq. ~3!, ^x(t)&5f(t). The dispersion or variance o
x(t), r(t), can be obtained accordingly using Eq.~4!,

r~ t !5Š@x~ t !2^x~ t !&#2
‹5f~21/b intrt !2@f~ t !#2,

~10a!

with r(t50)5r(t→`)50.
For the case of current interest,f(t)5exp@2(t/

tKWW)bKWW#, we have

r~ t !5Š@x~ t !2^x~ t !&#2
‹5f~21/b intrt !2f~21/bKWWt !,

~10b!

with r(t)50 if bintr5bKWW, and withr(t) attaining a maxi-
mum wheneverbintr.bKWW. The positiontmax at which~for
finite values oft) the slope ofr(t) vanishes,dr(t)/dt50, is

tmax5tKWWu1/bKWW,

u5 ln~2!@12l#/@222l#, l5bKWW /b intr . ~11!

The amplitude at the peak position,rmax5r(tmax), can be
written asrmax5exp@22lu#2exp@22u#, which is bounded to
rmax<

1
4. Finally, we define the standard deviation ofx(t),

s(t)5Ar(t), and its peak valuesmax5s(tmax), with smax
<1

2. It is worth noting that the values ofrmax and smax de-
pend only on the key parametersb intr andbKWW in the form
of the ratiol5bKWW /bintr.

III. SOLVATION DYNAMICS

A brief summary of the experimental technique referr
to, phosphorescence solvation dynamics, appears in o
The technique of phosphorescence solvation dynamics
volves the time-resolved emission spectra of probe m
ecules dissolved at low concentration in a polar material.
time t50, the chromophores are electronically excited fro
their ground stateS0 to their excited stateT1 , thereby induc-
ing a changeDm5mE2mG in the permanent dipole momen
of the probes@20#. The effect of this transition is to initiate
dielectric relaxation process within the solvent@21#, such
that the emission energyn i(t) of each probe moleculei de-
creases with time, whenever orientational polarization is
tive within the excited state lifetime. The mean emissi
energyn(t)5^n i(t)& reflects the average dynamics of th
Stokes shift, which closely follows the macroscopic diele
tric modulusM (t) of the solvent, as has been demonstra
quantitatively@22#. The total Stokes shift on the energy sca
is given byDn5n(0)2n(`), and the normalized decay ca
be represented byC(t)5@n(t)2n(`)#/Dn. At time t50,
the emission spectrum resembles a Gaussian profile ch
terized by its meann~0! and standard deviations inh(0). In
the equilibrium statet→`, the spectrum is again of Gaus
ian shape withsinh~`!5sinh~0!5s0 . Therefore, this optica
experiment not only observes the approach of the ave
energyn(t) toward equilibrium, but also the distribution o
site-specific solvation free energies in terms of the en
emission profile or in terms of its second central mom
quantified bys inh

2 (t). It is important to realize thats inh refers
to the inhomogeneouslinewidth, where the energetic dispe
er.
n-
l-
t

c-

-
d

ac-

ge

e
t

sion stems from a distribution of site-specific free energ
and where thehomogeneouslinewidth of an individual emit-
ter, shom, remains negligible. The contributions ofshom to
the observed optical linewidth remain small only at suf
ciently low temperatures, where the dephasing times are
cordingly large. For this reason, fluorescent probes are in
propriate for measurings inh(t). Note that the issue o
inhomogeneous versus homogeneous optical broade
bears no direct relation to the problem of dynamic hetero
neity versus dynamic homogeneity.

For a system in thermodynamic equilibrium, the theo
states that inhomogeneously broadened optical lines ar
Gaussian shape, and that their variances0

2 and response am
plitude Dn are related by@23,24#

s0
2

Dn
5

~mG2mE!kT

chmE
, ~12!

i.e., this ratio no longer depends on the thermodynamic s
of the solvent under steady state conditions. Therefore,
values ofDn and s0 cannot be tailored independently b
experimental conditions.

Similar to a dielectric relaxation experiment yielding th
time-dependent susceptibility«(t), phosphorescence solva
tion dynamics probe the relaxation process due to orie
tional molecular motion in terms ofC(t). In the present
context, the important feature of the solvation results is th
additional information,s inh(t), regarding the possible spatia
variation of site-specific contributions toC(t). Although
such s inh(t) data have recently been analyzed in terms
dynamic heterogeneity@8,12# by approximate simulation
procedures, no analytical expression has been advance
far which rationalizes the time-dependent widths inh(t) of
inhomogeneously broadened optical emission profiles. As
will show below, the functionr(t) in Eq. ~10! is the key
ingredient for modeling the time dependence ofs inh(t).

IV. DISCUSSION

Casting the possible spatial variation of response patte
in disordered materials into a probability densityg(t) of
relaxation times is common practice. However, t
ensemble-averaged relaxation functionf(t) is usually repre-
sented by a superposition of purely exponential contri
tions, which corresponds to our limiting case of heteroge
ity with b intr51. Only recently, it has been recognized th
Eq. ~4! is a practical approach for assessing the intermed
situations between the homogeneous and heterogeneou
tremes@11,12#. Since solving Eq.~4! is more general than
seeking for theg(t) which results in a KWW typef(t) in
Eq. ~2!, we do not expect to find an expression forg(t)
much simpler than Eq.~8! for arbitrary values of the intrinsic
dispersion measured byb intr . The special caseb intr51 and
n51 in Eq. ~6! leads to the well known expression for th
average KWW time scale,̂ t&KWW5tKWWG(1/bKWW)/
bKWW @19#. Also, the formulas for the meana1* , variance
m2* , and skewnessm3* as regardsj5 ln(t) represent gener
alizations of former results@25# for the special caseb intr
51. The above exact expressions for the moments ofg(t)
and g* (ln t) for arbitrary parameters within the limits 0
,bKWW,b intr<1 are especially of interest when approx
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782 PRE 58RANKO RICHERT AND MANFRED RICHERT
mate expressions forg(t) are required, which are easier
handle than the form of Eq.~8!.

In the following, we will focus on the variance or dispe
sion of the intrinsic decay functionx(t)5exp@2(t/t)bintr# as
a function ofb intr . The averagêx(t)& is directly given by
Eq. ~4!, ^x(t)&5f(t). For the variancer(t) we haver(t)
5Š@x(t)2^x(t)&#2

‹5f(21/b intrt)2@f(t)#2 from Eq. ~10a!,
without having to specify a particular function forf(t). The
interpretation ofr(t) is as follows. If it were possible to
detect the normalized responsesx i(t) of the individual relax-
ors (i 51,...,N) within the material under study, then th
variance of amplitudes at timet is given by r(t). Figure
1 outlines different situations for the examplef(t)
5exp@2(t/tKWW)bKWW# with bKWW50.5 andtKWW51. For
b intr5bKWW , there is no dispersion inx(t), whereass(t)
5Ar(t) ~dotted lines! displays an increasingly pronounce
peak asb intr increases toward the purely heterogeneous li
at b intr51. The different decaysx i(t) in Fig. 1 are traces of
exp@2(t/ti)

bintr# with ln(ti)5a1*2Am2* , a1* , and a1*
1Am2* , in order from left to right curves, i.e., at ln(ti)
5^ln(t)& plus or minus the standard deviation of ln(t).

If s(t) or r(t) were employed for establishing a scale f
the degree of heterogeneity, one would encounter the
that these quantities are time dependent wheneverbKWW
Þb intr , i.e., for all cases except the purely homogene

FIG. 1. Individual relaxation patternsx i(t) for an ensemble-
averaged decayf(t)5^x i(t)& of the KWW type with tKWW51
and bKWW50.5 and for various values ofb intr50.50, 0.55, and
1.00. The decaysx i(t) in each panel are traces of exp@2(t/ti)

bintr#
with ln(ti)5a1*2Am2* ~left dashed line!, a1* ~solid line!, and a1*
1Am2* ~right dashed line!, i.e., at ln(ti)5^ln(ti)& 6 the standard
deviation of ln(ti). The dotteds(t) curves represent the standa
deviations of the site specific decays, (^x i(t)

2&2^x i(t)&
2)1/2. The

ensemble averaged decayf(t) is identical for all three situations
and therefore reflects only partial information on the relaxation p
cess.
it

ct

s

limit. More sensible in this context are the peak values,
therrmax5r(tmax) or smax5s(tmax), with the positions oftmax
given by Eq.~11!. The dependences oftmax andrmax on b intr
and parametric inbKWW are presented graphically in Fig. 2
The bounds for arbitrary exponents 0,bKWW<b intr<1 are
0<rmax<

1
4 and 0<smax<

1
2. A further useful time-

independent scale of the dispersion is the area underr(t)
normalized to its upper limit̂ t&KWW/2, where ^t&KWW

5tKWWbKWW
21 G(bKWW

21 ),

P~b intr ,bKWW!5
2

^t&KWW
E

0

`

r~ t !dt

523@221/b intr2221/bKWW#, ~13!

with P(b,b)50 andP(1,0)51.
Up to this point, we have refrained from relating the r

sults to experimental observables, except for identify
f(t) with typical relaxation data. Numerous experimen
techniques are available for measuring this ensem
averaged responsef(t). However, an infinite number of val
ues forb intr can rationalize a dispersivef(t) data set, such
that f(t) alone is bound to remain indecisive regarding t
degree of heterogeneity of dynamical processes. In what
lows, we argue that the standard deviations(t)5Ar(t), as-
sociated with the distribution of site-specific decaysx i(t),
can be measured directly in terms of the time depend
inhomogeneous optical line widths inh(t), thereby fixing the
value ofb intr .

-

FIG. 2. Graphs of positiontmax ~in units of tKWW) and ampli-
tude rmax regarding the peak of the time dependent variancer(t)
5^x i(t)

2&2^x i(t)&
2 as a function ofb intr . The curves are paramet

ric in bKWW, ranging from 0.1 to 0.9 in steps of 0.1. The dots f
bKWW50.5 mark the three situations outlined in Fig. 1.
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For rationalizings inh(t), measured in the course of a so
vation process, we assume a Gaussian distributionn@n i(`)#
of equilibrated free energies centered atn(`),

n@n i~`!#5
1

s0&p
expF @n i~`!2n~`!#2

2s0
2 G , ~14!

and an independent distribution of time scalest, such that
the single siten i(t) can be written as

n i~ t !5n i~`!1Dn exp@2~ t/t i !
b intr#5n i~`!1Dnx i~x!.

~15!

Since the quantitiesn i(`) andx i(t) are independent random
variables, the expectation valuen(t) and variances inh

2 (t) of
n i(t) can be obtained by adding the individual correspond
moments, which yields

n~ t !5^n i~ t !&5n~`!1DnC~ t !5n~`!1Dnf~ t !,
~16!

where f(t)5C(t) is again the normalized ensembl
averaged response, and

s inh
2 ~ t !5^@n i~ t !2n~ t !#2&5s0

21Dn2r~ t !, ~17!

with r(t)5@C(21/b intrt)2C(21/bKWWt)# from Eq. ~10b!. For
the time-dependent relative changes in the Gaussian w
we finally arrive at

s inh~ t !

s0
5F11

Dn2

s0
2 @C~21/b intrt !2C~21/bKWWt !#G1/2

,

~18!

now demonstrating the impact ofb intr on the observable
s inh(t), whereasC(t) expectedly remains independent
b intr . The bounds of the time-dependent widths inh(t) are
s inh(t)5s0 for the case ofb intr5bKWW and s inh(t)<@s0

2

1Dn2/4#1/2 for other values of 0,bKWW,b intr<1. Equa-
tion ~18! now provides a straightforward link between th
normalized Stokes shift response functionC(t) and the tran-
sient increase in the inhomogeneous linewidths inh(t). It pre-
dicts that an excess linewidth appears in the course o
solvation process if~and only if! the underlying dynamica
processes exhibit a spatial variation of time scales. C
versely, one could conclude on homogeneous dynamics f
an observation of a time-independent linewidth, i.e.,
s inh(t)[s0 .

Finally, we address experimental data obtained fors inh(t)
in order to assess their use for delineating the value ofb intr
and thereby the degree of heterogeneity in a real system.
experimental details on solvation data for quinoxaline~QX!
as a chromophore dissolved in the glass-former
methyltetrahydrofuran~MTHF! have been reported else
where@8,12,21#. For this system just above the glass tran
tion temperatureTg591 K, it has been found thatDn
5246 cm21, s inh(`)5s inh(0)5s05160 cm21, and C(t)
5exp@2(t/tKWW)0.5#, in favorable agreement with the d
electric properties«* (v)51/M* (v) of MTHF @21#. The
upper panel of Fig. 3 shows theC(t) decay recorded atT
595.1 K together with a KWW fit withtKWW525 ms and
bKWW50.5. This C(t) and s inh(t) data set has been an
g

th,

a

n-
m
f

he

-

-

lyzed recently by invoking numerical approximations to t
function g(t) and using simulations in order to estimate t
impact of b intr on the time-dependent emission spec
@8,12#. The advantage of the present result is to have sim
but exact formulas fors inh(t) in Eq. ~18! or for s inh

2 (t) in Eq.
~17!, which are applicable to KWW-type overall dynamic
The results imply that we can interpret the variance of inh
mogeneously broadened emission spectra as the sum
spectral contributions0 and a dynamic contributionr(t).
Conversely to Eq.~17!, we now infer experimental values fo
rexpt(t) from the s inh(t) data using the expressionrexpt(t)
5@s inh

2 (t)2s0
2#/Dn2, for which there is no unknown param

eter on the right hand side. The experimental results
rexpt(t) are shown as dots in the lower panel of Fig. 3. T
lines in this plot are calculatedr(t) curves using Eq.~10b!
with f(t)5C(t)5exp@2(t/25 ms)0.5# for various values of
b intr . A comparison between experiment and calculation
dicates that the relaxation dynamics are consistent only w
0.8<b intr<1. In other words, the highest possible nonexp
nentiality inherent in the response of each relaxor cor
sponds to a decay of the type exp@2(t/t)0.8#, i.e., the pre-
dominant ~if not the entire! contribution to the ensemble
averaged nonexponentiality associated withbKWW50.5
stems from the time scalet being a spatially varying quan
tity. Therefore, a parallel relaxation scheme is made resp
sible for the overall KWW-like dispersion, in contrast to
previous hierarchical model for rationalizing stretche
exponential behavior@26#.

FIG. 3. Experimental solvation dynamics results~dots! for the
system QX/MTHF atT595.1 K in terms of the normalized Stoke
shift C(t) and the inhomogeneous linewidths inh(t) scaled asr(t).
The solid line in the upper frame is a fit to theC(t) data using
f(t)5exp@2(t/25 ms)0.5#. The lines in the lower frame refer to
r(t) based onf(t)5exp@2(t/25 ms)0.5# for various values ofb intr

51.00, 0.90, 0.80, 0.70, 0.60, and 0.55, in the order from top
bottom curve. The casebintr5bKWW50.5 leads tor(t)[0.
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V. CONCLUSIONS

We have assessed the method of analyzing dispersiv
laxation patternsf(t) in terms of a distribution of KWW
decaysx(t), instead of confining the integral kernel to th
exponential case. This defines implicitly a probability de
sity g(t) or g* (ln t) whose most relevant moments can
calculated. We find that the variancer(t) of the stochastic
quantity x(t) bears interesting features, because it is se
tive to the relaxation dispersion inherent in each relaxor
quantified byb intr . More importantly,r(t) or s(t)5Ar(t)
is measurable by means of phosphorescence solvation
namics, which allows one to deriveb intr from experimental
data, whereas an ensemble-averaged decayf(t) is bound to
remain indecisive in this respect. The parameterb intr estab-
lishes a continuous scale ranging from purely heterogene
to homogeneous dynamics, with only a pronounced exten
heterogeneity (0.8<b intr<1) being compatible with the
mechanism of structural relaxation in real systems.
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APPENDIX

A brief outline of how the momentsan of g(t) anda1* ,
m2* , andm3* of g* (ln t) are calculated is given below. Th
probability densityg(t) is defined implicitly in Eq.~4!, and
depends on the parameterstKWW.0, bKWW.0, and b intr
.bKWW . Multiplying Eq. ~4! by tb with Reb.21, and in-
tegrating overt within the limits 0, . . . , `, yields
m

l

.

u

-

o-
,

C

.

re-

-

i-
s

y-

us
of

ie

E
0

`

tb exp@2~ t/tKWW!bKWW#dt

5E
0

`

g~t!E
0

`

tb exp@2~ t/t!b intr#dt dt. ~A1!

Substitutingw5(t/tKWW)bKWW and v5(t/t)b intr defining r
5b11 (Rer.0), and using the definition of the gamm
function G(z)5*0

`tz21e2tdt (Rez.0) leads to

E
0

`

trg~t!dt5^tr&5tKWW
r

G~11r/bKWW!

G~11r/b intr!
, ~A2!

which states the momentsan5^tn& with respect tog(t).
For obtaining the logarithmic momentsa1* and mn>2* of

g* (ln t), we recall the above definitionsj5 ln(t) and
g* (j)dj5g(t)dt, and defineL(r) andK(n):

L~r!5E
2`

`

erjg* ~j!dj5^tr&

5tKWW
r

G~11r/bKWW!

G~11r/b intr!
~Re r.0!, ~A3!

K~n!5 lim
r→01

dn ln L~r!

drn , ~A4!

whereK(n) now has the following properties:a1* 5K(1),
m2* 5K(2), andm3* 5K(3). The final evaluations ofK(n)
generate the results stated in Eq.~9!. Note again thatmn*
5K(n) is not warranted forn.3.
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